Use of Phosphorus-Containing Polymers for the Removal of Metal Ions from Wastewater

By: Lupa, I. (Lupa, Laviniia)[1]; Popa, A (Popa, Adriana)[2]; Ilia, G (Ilia, Gheorghe)[2]

PHOSPHORUS-BASED POLYMERS: FROM SYNTHESIS TO APPLICATIONS

Edited by: Monge, S; David, G

Book Series: RSC Polymer Chemistry Series

Volume: 11 Pages: 225-251

Published: 2014

Document Type: Article; Book Chapter

Keywords

KeyWords Plus: CHITOSAN-POLYPHOSPHATE BEADS; LIGAND SYNERGISTIC INTERACTION; IMMOBILIZED PHOSPHATE LIGANDS; ENVIRONMENTAL SAMPLES; AQUEOUS SOLUTIONS; EXCHANGE-RESINS; ACID GROUPS; METHYLENEPHOSPHONIC ACID; MACROPOROUS POLYMERS; SELECTIVE ADSORPTION

Author Information

Reprint Address: Popa, A (reprint author)
+ Romanian Acad, Inst Chem Timisoara, B Dului Mihai Viteaz 24, Timisoara 300223, Romania.

Addresses:
+ [1] Politehn Univ Timisoara, Fac Ind Chem & Environm Engr, Timisoara 300223, Romania

Email Addresses: apopa_ro@yahoo.com

Publisher

ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, CAMBRIDGE CB4 4WF, CAMBS, ENGLAND

Categories / Classification

Research Areas: Polymer Science

Web of Science Categories: Polymer Science

See more data fields
CHAPTER 11

Use of Phosphorus-Containing Polymers for the Removal of Metal Ions from Wastewater

Lavinia Lupa, Adriana Popa and Gheorghe Ilia

The removal of heavy metals from various industrial waste effluents before discharging the effluent is a global environmental concern. In this chapter the advantages of the use of natural and synthetic chelating resins in the removal of various metal ions from aqueous solutions are presented. The chelating resins were obtained by the chemical modification of their surface with different phosphorus pendant groups. One may notice that the modification of the polymeric matrix through phosphorylation of its surface with different phosphorus pendant groups leads to an increase in the adsorption efficiency of the polymer in the removal of metal ions from various aqueous solutions. It was observed that the selectivity for various metal ions and the maximum adsorption capacity of the functionalized polymer depended on the type of the functionalized groups grafted on the polymeric matrix, the properties of the ion-exchange/coordination resin, and the phosphorylation conditions. In conclusion, the use of a functionalized polymer with various types of phosphorus pendant groups showed good feasibility in the removal of metal ions from different aqueous solutions.
Use of Ionic Liquids in Solid-Liquid Separation Processes

Lavinia Lupa, Petru Negrea and Adriana Popa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65890

Abstract

This chapter reports the possible use of ionic liquids (ILs) in solid-liquid separation processes by their immobilization in suitable solid supports. This method presents some benefits such as economical one—due to the fact that a smaller quantity of ILs is used and the loss of ILs in the aqueous phase is avoided; and second the efficiency benefit—because the advantages of the ILs are combined with the properties of the solid support, and this enhances the removal process of metal ions from aqueous solutions and could be successfully used in the removal processes of metal ions from aqueous solutions containing trace amounts. The type of solid supports used for the immobilization of different ILs, and the methods used for the immobilization were discussed. Also the adsorption efficiency of these ionic liquid immobilized solid supports in the removal process of different metal ions (Cr, Hg, Pt, Au, Pd, Cs, Sr, Tl, etc.) from aqueous solutions were presented. The inorganic materials present a higher efficiency to be used as solid supports for the immobilization of the ILs. It was observed that the physical method of impregnation, especially ultrasonication, has a positive effect on the adsorption capacities of the materials obtained.

Keywords: ionic liquids, heavy metals, impregnation, encapsulation, adsorption

1. Introduction

The huge quantities of waste, discharged from various industries and from human activities, and their negative effect on human health and the environment, have led to some stringent regulations. These have driven researchers to find and develop some new efficient methods for the removal and recovery of organic and mineral contaminants from discharged wastes.

Many separation techniques have been proposed especially for the treatment of wastewaters containing heavy metals, such as precipitation [1, 2] ion-exchange [3, 4] liquid-liquid
Use of Ionic Liquids in Solid-Liquid Separation Processes

By: Lupu, L (Lupu, Liviu) [1]; Negrea, P (Negrea, P. d.) [1]; Popa, A (Popa, Adriana) [1]

PROGRESS AND DEVELOPMENTS IN IONIC LIQUIDS
Edited by: Hendry, S
Published: 2017
Document Type: Article; Book Chapter

Abstract

This chapter reports the possible use of ionic liquids (ILs) in solid-liquid separation processes by their immobilization in suitable solid supports. This method presents some benefits such as economical one due to the fact that a smaller quantity of ILs is used and the loss of ILs in the aqueous phase is avoided; and second the efficiency benefit because the advantages of the ILs are combined with the properties of the solid support, and this enhances the removal process of metal ions from aqueous solutions and could be successfully used in the removal processes of metal ions from aqueous solutions containing trace amounts. The type of solid supports used for the immobilization of different ILs, and the methods used for the immobilization were discussed. Also the adsorption efficiency of these ionic liquid immobilized solid supports in the removal process of different metal ions (Cr, Hg, Pt, Au, Pd, Cs, Sr, TI, etc.) from aqueous solutions were presented. The inorganic materials present a higher efficiency to be used as solid supports for the immobilization of the ILs. It was observed that the physical method of impregnation, especially ultrasonic cleaning, has a positive effect on the adsorption capacities of the materials obtained.

Keywords

Author Keywords: ionic liquids; heavy metals; impregnation; encapsulation; adsorption

KeyWords Plus: CYPHOS IL 101; TETRADECYLETHYLPHOSPHONIUM CHLORIDE; PHASE EXTRACTION; CYPHOS IL 101; BIOPOLYMER CAPSULES; AQUEOUS-SOLUTIONS; METAL-IONS; FUNCTIONALIZED SILICA; WATER SAMPLES; HCL SOLUTIONS; REMOVAL

Author Information

Reprint Address: Lupu, L (reprint author)
 Politehn Univ Timisoara, Fac Ind Chem & Environm Engn, Timisoara, Romania.
Addresses:
 [1] Politehn Univ Timisoara, Fac Ind Chem & Environment Engn, Timisoara, Romania
E-mail Addresses: lavinia.lupu@upt.ro

Publisher

INTECH EUROPE, JANEZA TRDINE 9, RJEKA, 51000, CROATIA

Categories / Classification

Research Areas: Chemistry; Electrochemistry; Materials Science
Web of Science Categories: Chemistry, Physical; Electrochemistry; Materials Science, Multidisciplinary

See more data fields

Cited References: 65

Showing 30 of 65

1. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water
 By: Abu Ismail, Abnur; Arnold, Michael; Villalobos, Jorge

65

Times Cited

Create Citation Alert

All Times Cited Counts

65 in All Databases

View Related Records

Most recently cited by:

Ehrlich, H. V.; Budaeva, T. M.; Maryutina, T. A.
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY (2017)

Use in Web of Science

Web of Science Usage Count

0

Last 180 Days

Since 2013

Learn more

This record is from:
Web of Science Core Collection
- Book Citation Index - Science

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.
STUDII PRIVIND ELIMINAREA Sr\(^{2+}\) DIN SOLUȚII
APOASE PRIN ADSORBȚIE PE POLIMER
IMPREGNAT CU LICHID IONIC

Coordonatori:
Asist. Dr. Ing. Lavinia LUPA
C.S. Dr. Ing. Mihaela CIOPEC

Student:
Adina IORGONI

Timișoara
2014
Universitatea Politehnica Timișoara
Facultatea de Chimie Industrială și Ingineria Mediului

VALORIFICAREA DEȘEURILOR PROVENITE DE LA PROCESAREA FRUCTELOR CA MATERIALE ADSORBANTE

Coordonator:
Asist. Dr. Ing. LUPA LAVINIA

Student:
SIMODE PAULA
Studii privind eliminarea cadmiului prin adsorbtie pe samburi de prune

Coordonator:
Asist. Dr. Ing. Lavinia Lupa

Masterand:
Ing. Madalina Iosu

Timișoara
2014
LUCRARE DE DIZERTAȚIE

Coordonator:
Asist. Dr. Ing. Lavinia LUPA

Masterand:
Ing. Francisc SZASZ

Timișoara
2014
DISERTAȚIE

Coordonatori științifici:
S.L. dr. ing. IOAN URSOIU
Asist.dr.ing. LAVINIA LUPA

Student:
BĂEȘU CRISTINA ADRIANA

TIMIȘOARA
2014
IMPLEMENTAREA MANAGEMENTULUI SUBSTANȚELOR PERICULOASE ÎNTR-O FIRMĂ DE AUTOMOTIVE

Coordonator:
S.l. Dr. Ing. Lavinia LUPA

Masterand:
Ing. Razvan Noaghi

Timișoara
2015
STUDII PRIVIND ELIMINAREA CADMIULUI
PRIN ADSORBŢIE PE CĂRBUNE ACTIV
OBŢINUT DIN SĂMBURI DE PRUNE

Coordonator științific:
Ș.L. Dr. Ing. Lupa Lavinia

Student:
Constandachi Margareta

Timișoara
2015
ÎNDEPĂRTAREA TALIULUI PRIN ADSORBȚIE PE FLORISIL IMPREGNAT CU LICHID IONIC

Coordonator:
S.I. Dr. Ing. Lavinia LUPA

Masterand:
Ing. CRISTINA GRECU

Timișoara
2015
ÎNDEPĂRTAREA STRONȚIULUI DIN SOLUȚII APOASE PRIN ADSORBȚIE PE FLORISIL IMPREGNAT CU LICHID IONIC.

STUDII ÎN REGIM DINAMIC

Coordonator:
S.I. Dr. Ing. Lupa Lavinia

Student:
Rădoi Claudia Adelina

Timișoara
2015
STUDII EXPERIMENTALE
STUDII PRIVIND ÎNDEPĂRTAREA STRONȚIULUI PRIN ADSORBȚIE PE SUPORTURI POLIMERICE IMPREGNATE CU LICHID IONIC

Coordonator:
S.I. Dr. Ing. Lupa Lavinia
C.S. I Dr. Ing. Popa Adriana

Student:
Stoicescu Paul

Timișoara
2015
ÎNDEPĂRTAREA TALIULUI PRIN ADSORBȚIE PE FLORISIL IMPREGNAT CU LICHID IONIC. INFLUENȚA CONDIȚIILOR DE IMPREGNARE

Coordonator:
S.I. Dr. Ing. Lavinia LUPA

Student:
Laurentiu-Mihai Ticus

Timișoara
2015
STUDII PRIVIND ADSORBŢIA Sr2+ DIN SOLUŢII APOASE PE SILICE IMPREGNATĂ CU LICHID IONIC

Coordonator:
S.L. Dr. Ing. Lavinia LUPA

Masterand:
Ing. Adina IORGONI

Timişoara
2016
POLITICA DE PREVENIRE A ACCIDENTELOR MAJORE. STUDIU DE CAZ: S.C. TRANS GAS LPG SERVICES S.R.L.

Coordonator
S.l. Dr. Ing. Lavinia LUPA

Student
Ioan-Bogdan MARIŞ

Timisoara
2016
PROIECT DE DIPLOMA

Coordonator:
S.l. Dr. Ing. Lavinia LUPA
C.S. I. Dr. Ing. Adriana POPA

Student:
Angela SPIRACHE

Timișoara
2016
PROIECT DE DIPLOMĂ

Coordonator:
S.l. Dr. Ing. Lupa Lavinia
C.S. I Dr. Ing. Aurelia VISA

Student:
Chircu Mioara-Raluca

Timișoara
2016
Obtinerea, caracterizarea si utilizarea Co$_3$O$_4$
in adsorbtia Pb(II) din solutii apoase

Coordonator:
S.L. Dr. Ing. Raluca VODA
S.L. Dr. Ing. Lavinia LUPA

Student:
Popovici Ioan Paul

Timișoara
2016
UNIVERSITATEA POLITEHNICA TIMIȘOARA
Facultatea de Chimie Industrială și Ingineria Mediului

PROIECT DE DIPLOMĂ

Coordonatori științifici:
Prof. Dr. Ing. Rodica Pode
Ș.l. Dr. Ing. Lavinia Lupa

Candidat:
BĂLȚAT Florina Maria

Timișoara
2017
PROIECT DE DIPLOMĂ

Coordonatori științifici:
Prof. Dr. Ing. Rodica PODE
Ş.l. Dr. Ing. Lavinia LUPA

Candidat:
Georgiana Mădălina Ebâncă

Timișoara
2017
PROIECT DE DIPLOMĂ

Coordonator științific:
Ș.l. dr. ing. Lavinia Lupa

Candidat:
Nick Samuel Țolea

Timișoara
2017
PROIECT DE DIPLOMĂ

Coordonator științific:
Ș.l. dr. Ing. Lavinia LUPA

Candidat:
Anamaria Claudia ZAMFIRIUC

Timișoara
2017
PROIECT DE DIZERTAȚIE

Coordonator științific:
S.l. dr. ing. Lavinia LUPA
CS. I. dr. ing. Adriana POPA

Candidat:
Ing. Simona Andreea PAȘTIU

Timișoara
2017
PROIECT DE DISERTAȚIE

Coordonatori științifici:
Ș.l.Dr.Ing. Lavinia Lupa
Asist. Univ. Dr. Elena Alina Moaca

Candidat:
Ing. Paul Stoicescu

Timișoara
2017
PROIECT DE DIZERTAȚIE

Coordonator științific:
Ș.l. dr. ing. Lavinia LUPA

Candidat:
Ing. Mihai Laurențiu TICUȘ

Timișoara
2017
PROIECT DE DISERTAȚIE

Coordonator:
S.l. Dr. Ing. Lavinia LUPA
CS II Dr. Ing. Elisabeta I. SZERB

Student:
Maria Angela SPIRACHE

Timișoara
2018
PROIECT DE DIPLOMĂ

COORDONATOR ȘTIINȚIFIC:
Ș.I. dr. ing. Lavinia Lupa

CANDIDAT:
Surupăceanu Ecaterina Roxana

TIMIȘOARA
2018
PROIECT DE DIPLOMĂ

Coordonator științific:
Ș.l. dr. ing. Lavinia LUPA

Candidat:
Rohnean Laura

Timișoara
2018
RAPORT SINTETIC DE EVALUARE A DISCIPLINELOR

Anul univ. 2017/2018

Disciplina: Tehnologii avansate de tratare si epurare a apei
Facultate: Facultatea de Chimie Industrială și Ingineria Mediului
An de studiu: 1
Semestrul: 1
Serie: A
Domeniul: Inginerie chimică
Specializare: Ingineria și managementul mediului în industrie/Ingineria compusilor anorganici
Titular Curs: Lupa Lavinia Afrodita
Titular Aplicații: Vancea Cosmin

<table>
<thead>
<tr>
<th>Sectiune</th>
<th>Disciplina</th>
<th>Predare</th>
<th>Relația cu studentii</th>
<th>Examinare</th>
<th>Disciplina</th>
<th>Predare</th>
<th>Relația cu studentii</th>
<th>Examinare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punctaj obtinut</td>
<td>30.79</td>
<td>26.79</td>
<td>35.79</td>
<td>37.5</td>
<td>30.79</td>
<td>36.67</td>
<td>42.67</td>
<td>43.75</td>
</tr>
<tr>
<td>Punctaj maxim</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Procentaj</td>
<td>61.57%</td>
<td>53.57%</td>
<td>71.57%</td>
<td>75%</td>
<td>61.57%</td>
<td>73.33%</td>
<td>85.33%</td>
<td>87.5%</td>
</tr>
<tr>
<td>Punctaj total titular</td>
<td></td>
<td></td>
<td></td>
<td>130.86 (din 200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctaj total asistent</td>
<td></td>
<td></td>
<td></td>
<td>153.87 (din 200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctaj total materie</td>
<td></td>
<td></td>
<td></td>
<td>140.06 (din 200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>